
Epilepsy & Behavior 48 (2015) 21–28

Contents lists available at ScienceDirect

Epilepsy & Behavior

j ourna l homepage: www.e lsev ie r .com/ locate /yebeh
Cortical feature analysis and machine learning improves detection of
“MRI-negative” focal cortical dysplasia
Bilal Ahmed a, Carla E. Brodley a, Karen E. Blackmon b, Ruben Kuzniecky b, Gilad Barash a, Chad Carlson b,
Brian T. Quinn b, Werner Doyle b, Jacqueline French b, Orrin Devinsky b, Thomas Thesen b,c,⁎
a Department of Computer Science, Tufts University, Medford, MA, USA
b Comprehensive Epilepsy Center, Department of Neurology, School of Medicine, New York University, New York, USA
c Department of Radiology, School of Medicine, New York University, New York, USA
⁎ Corresponding author at: Comprehensive Epilepsy Ce
New York University, 223 34th Street, New York, NY 1001

E-mail address: thomas.thesen@med.nyu.edu (T. Thes

http://dx.doi.org/10.1016/j.yebeh.2015.04.055
1525-5050/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 March 2015
Revised 21 April 2015
Accepted 22 April 2015
Available online 31 May 2015

Keywords:
Epilepsy
Focal cortical dysplasia
Machine learning
Structural MRI
Focal cortical dysplasia (FCD) is themost common cause of pediatric epilepsy and the thirdmost common lesion
in adults with treatment-resistant epilepsy. Advances in MRI have revolutionized the diagnosis of FCD, resulting
in higher success rates for resective epilepsy surgery. However, many patients with histologically confirmed FCD
have normal presurgical MRI studies (‘MRI-negative’), making presurgical diagnosis difficult. The purpose of this
study was to test whether a novel MRI postprocessing method successfully detects histopathologically verified
FCD in a sample of patients without visually appreciable lesions. We applied an automated quantitative mor-
phometry approachwhich computed five surface-based MRI features and combined them in amachine learning
model to classify lesional and nonlesional vertices. Accuracy was defined by classifying contiguous vertices as
“lesional”when they fell within the surgical resection region. Our multivariate method correctly detected the le-
sion in 6 of 7MRI-positive patients, which is comparable with the detection rates that have been reported in uni-
variate vertex-based morphometry studies. More significantly, in patients that were MRI-negative, machine
learning correctly identified 14 out of 24 FCD lesions (58%). This was achieved after separating abnormal thick-
ness and thinness into distinct classifiers, as well as separating sulcal and gyral regions. Results demonstrate that
MRI-negative images contain sufficient information to aid in the in vivo detection of visually elusive FCD lesions.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Despite advances in pharmacotherapy for the treatment of epilepsy,
approximately one-third of patients remain to have seizures refractory
to medications [1]. For patients with treatment-resistant epilepsy
(TRE), the best option for achieving seizure freedom is often surgical
resection. In patients where a focal seizure onset is identified through
a comprehensive presurgical evaluation, surgical resection results in
seizure freedom rates ranging from 30 to 80% [2]. Despite a growing
number of studies demonstrating that surgery is effective for patients
with focal TRE, it remains underutilized [3]. Patients who lack an MRI-
visible lesion are less likely to be referred to a specialized epilepsy center
by neurologists [4], and many epilepsy specialists are reluctant to
recommend surgery without a well-defined lesion.

Focal cortical dysplasia (FCD), a malformation of cortical develop-
ment (MCD), is the most common epileptogenic lesion in children
and the third most common in adults with TRE [5,6]. Typical MRI
features of FCD include cortical thickening or thinning, blurring of the
nter, Department of Neurology,
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gray–white matter junction, increased signal intensities on FLAIR and/
or T2-weighted images, a transmantle stripe of T2 hyperintensity, and
localized brain atrophy [7]. However, 45% of histologically confirmed
FCD lesions go undetected by routine visual inspection of the MRI [8],
which may be in part due to the anatomical complexity of the cortex.
This makes FCD themost common histopathological finding in patients
with no visible lesion on MRI [9,10].

The feasibility of utilizing quantitative MRI methods for detecting vi-
sually apparent (i.e., MRI-positive) FCD lesions has been established
using voxel-basedmorphometry [11–14]. Cortical surface-basedmethods
have been combined in a multivariate approach with high accuracy in
classifying small, visually subtle FCD lesions [15,16]. Surface-based mea-
sures of cortical thickness, gray and white matter blurring, and sulcal
depth contribute the most predictive weight in multivariate linear dis-
criminant analyses, with cortical thickness offering the greatest specificity
to the primary lesion [16]. This approach provides class II evidence that
automated machine learning of MRI patterns can accurately identify
FCD lesions that were radiologically diagnosed asMRI-negative, although
these lesionswere ultimately found to be visually apparent andmanually
traceable when texture-based maps were provided to expert reviewers.

Here, we present a quantitative morphometry approach that com-
bines surface-based MRI processing methods with machine learning
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Table 1
Demographic- and seizure-related information of both MRI-positive and MRI-negative
patients.

Patient Location Age
(years)

Sex Seizure
onset age
(years)

Seizure
frequency
(per year)

Engel
class

MRI-positive subjects
NY49 R temporal 39 M 20 6 1
NY53 L frontal 18 F 10 44 1
NY123 L parietal 14 M 7 730 2
NY143 R frontal 38 F 4 1248 1
NY156 L temporal 20 M 7 182 2
NY187 L temporal 45 F 5 14 1
NY194 R temporal and R occipital 40 F 7 9 1
Mean 31 8.6 319

MRI-negative subjects
NY46 R temporal 41 M 3 52 1
NY51 L frontal, L insular,

and L temporal
14 F 1 365 4

NY67 R temporal 27 M 13 1825 1
NY68 L temporal 26 M 15 12 2
NY72 R temporal 46 M 74 2 2
NY98 L frontal and L insular 20 M 14 42 4
NY116 R temporal 30 M 22 84 1
NY130 L temporal 22 M 14 3 3
NY148 L temporal 37 M 35 3 2
NY149 R frontal 32 F 11 1460 1
NY169 R temporal 26 M 3 1277 1
NY171 R temporal 26 F 19 5 4
NY177 L temporal 38 F 19 5 3
NY207 R temporal 30 F 25 1 1
NY212 L temporal 37 M 21 166 1
NY226 R temp 40 F 5 8 1
NY241 L temporal 21 M 11 27 1
NY255 R temporal 20 F 15 48 –a

NY259 L temporal 26 F 9 288 2
NY294 R temporal 51 F 1 12 1
NY297 R temporal 51 F 8 52 1
NY299 R temporal 28 F 13 37 2
NY312 L temporal 43 F 6 24 1
NY322 R frontal, R insular,

and R temporal
24 F 9 12 1

Mean 31 15.3 242

M = male and F = female.
a Patient lost during follow-up.

22 B. Ahmed et al. / Epilepsy & Behavior 48 (2015) 21–28
algorithms to detect FCD lesions in patients classified as MRI-negative
following conventional radiological analysis of scans acquired through
a standard epilepsy protocol. The novelty of our approach is that it uti-
lizes specific strategies to model the biological features of FCD lesions.
For example, we train separate classifiers on abnormally thick versus
abnormally thin lesional regions to model these features separately,
which can vary by FCD lesion subtype [7]. Additionally, we train
separate classifiers for the gyral wall, sulcus, and crown to optimize de-
tection of bottom-of-the-sulcus lesions [17].

2. Materials and methods

2.1. Participants

Participants were selected from a large registry of patients with
epilepsy treated at the New York University School of Medicine
Comprehensive Epilepsy Center who signed consent for a research MRI
scanning protocol. Criteria for inclusion in this study included the
following: (1) completion of a high resolution T1-weighted MRI scan,
(2) surgical resection to treat focal epilepsy, and (3) diagnosis of FCD on
neuropathological examination of the resected tissue. These selection
criteria resulted in a sample of 31 patients with FCD. Demographic- and
seizure-related information for these participants is provided in Table 1.

In addition, MRI scans using identical imaging parameters from a
total of 62 neurotypical controls were acquired (31 females; ages
17–65; mean age = 33; SD = 12.5). Exclusion criteria for the control
group included any history of psychiatric or neurological disorders.

2.2. Image acquisition

2.2.1. Imaging for research
Imaging for the research protocol was performed at the New York

University Center for Brain Imaging on a Siemens Allegra 3T scanner.
Image acquisitions included a conventional 3-plane localizer and a T1-
weighted volume pulse sequence (TE = 3.25 ms, TR = 2530 ms,
TI = 1100 ms, flip angle = 7-degree field of view (FOV) = 256 mm,
matrix = 256 × 256, vertex size = 1 × 1 × 1.3 mm, scan time:
8:07 min). Acquisition parameters were optimized for increased gray/
white matter image contrast. The T1-weighted image was reoriented
into a common space, roughly similar to alignment based on the AC–
PC line. Images were corrected for nonlinear warping caused by non-
uniform fields created by the gradient coils.

2.2.2. Clinical imaging
Clinical imaging sequences for radiological review were acquired at

theNYUDepartment of Radiology on a 3-Tesla Siemens scanner. Clinical
sequences were variable across patients but commonly included high-
resolution T1-weightedMPRAGE (magnetization-prepared rapid gradi-
ent echo) images, T2-weighted images (axial and coronal, varying slice
thickness from 1 to 3 mm), and fluid-attenuated inversion recovery
(FLAIR) images (2–6 mm slice thickness). The research T1-weighted
MPRAGE images used in our analyseswere included in the set of images
reviewed by the clinical radiology team. Conventional visual analysis
of the clinical scans resulted in an MRI diagnosis of FCD in 7 patients
(MRI-positive) and a “normal” report in 24 patients (MRI-negative).
The higher number of MRI-negative patients in this sample may be
due to a tendency for patientswithmore complex,MRI-negative epilep-
sy to be referred to our level 4 epilepsy treatment center.

2.3. Surface reconstruction

The researchMRI sequenceswere processed using the FreeSurfer soft-
ware package (http://surfer.nmr.mgh.harvard.edu/), which performs au-
tomated tissue segmentation to recreate 3D representations of the
cortical surfaces from structural MRI scans [18]. Briefly, after skull
stripping, themethod [18] involves (i) segmentation of the white matter,
(ii) tessellation of the gray/white matter boundary, (iii) inflation of the
folded surface, and (iv) correction of topological defects. Once the surface
was reconstructed, it was further refined by classifying all white matter
vertices in the MRI volume to create the gray/white matter boundary.
The gray/whitematter junctionwas delineated up to submillimeter accu-
racy by further refining the white matter surface. After refining the gray/
white matter junction, the pial surface was located by deforming the sur-
face outward. Each segmentation and reconstruction underwent manual
inspection and editing, when necessary. However, the high image quality
and gray–white contrast in the initial images resulted in minimal editing
requirements for both patient and control scans. Surface reconstruction
was followed by a registration process that involvedmorphing the recon-
structed surface to an average spherical representation that accurately
matched sulcal and gyral features across individual subjects while mini-
mizing metric distortion [19].

2.4. Morphometric feature extraction

Five cortical features were computed at each vertex. These included
(i) cortical thickness, (ii) gray/white matter contrast, (iii) sulcal depth,
(iv) mean curvature, and (v) Jacobian distortion.

(i) Cortical thicknesswas assessed at each location by using an average
of two measurements: (a) the shortest distance from the white
matter surface to the pial surface and (b) the shortest distance
from the pial surface at each point to the white matter surface.

http://surfer.nmr.mgh.harvard.edu/
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(ii) Gray/white matter contrast (GWC) was estimated by calculating
the nonnormalized T1-weighted image intensity contrast at
0.5 mm above and below the gray/white interface with trilinear
interpolation of the images. The range of GWC values was [−1,
0], with values near zero indicating a higher degree of blurring of
the gray/white boundary.

(iii) Sulcal depth was estimated by calculating the dot product of the
movement vectors with the surface normal [20] and results in
the calculation of the depth/height of each point above the average
surface. The values of sulcal depth lie in the range [−2, 2], with
lower values indicating a location in the sulcus whereas higher
values indicate a location on the gyral crown. We used the sulcal
depth measure to stratify the classification into sulcus, wall, and
gyrus because these areas differ in cortical thickness and gray–
white contrast distribution [21] and there is evidence that FCD oc-
curs predominantly in sulcal regions [22,17].

(iv) Curvature is measured as 1 / r, where r is the radius of an inscribed
circle and mean curvature represents the average of two principal
curvatures with a unit of 1/mm [23]. Mean curvature quantifies
the sharpness of cortical folding at the gyral crown or within the
sulcus and can be used to assess the folding of small secondary
and tertiary folds in the cortical surface.

(v) In the registration process, as defined above, each subject's gyral
and sulcal features are aligned by warping the entire brain to a
spherical average surface (i.e., the ‘standard brain’). During this
process, each vertex is subjected to a nonlinear spherical trans-
form. Jacobian distortionmeasures the magnitude of the nonlinear
transform at each vertex needed to warp each vertex on the
subject's brain to a target vertex on the average surface. It is amea-
sure of global brain deformation and has also been applied at the
vertex level in various neurological disorders [24].

2.5. Normalization of parameters

In preparing the data for the machine learning classifier, the cortical
features from each patient are z-score normalized using the mean and
standard deviation calculated from the control population, on a
vertex-by-vertex basis.

2.6. Lesion and resection tracing

ForMRI-positive patients, an expert on epileptogenicmalformations
on cortical development and who is board-certified in neurology and
neurophysiology (RK), reviewed the clinical MRI report and manually
traced the outer regions of the visible lesions on the morphometric
T1-weighted 3D volume scan based on the lesional areas identified in
the initial clinical report or during surgical conference. When available,
the visual detection was aided by T2-weighted FLAIR images from the
standard clinical epilepsy MRI protocol. For MRI-negative patients, the
postoperative T1-weighted image (with the resection area removed)
was rigid-body coregistered to the (intact) preoperative T1-weighted
image using FLIRT [25]. The brain resection area was manually traced
on the postsurgical MRI scan by a trained technician blinded to patient
diagnosis and reviewed by a board-certified neurologist. For both lesion
and resection tracings, the manual masks in the vertex space were sub-
sequently projected onto the cortical surface by assigning each vertex to
the nearest surface vertex. Because the surface has subvertex resolution,
a morphological closing operation was used to fill in any unlabeled
vertices.

2.7. Univariate (z-score) analysis

In order to compare the machine learning approach to a univariate
approach that uses surface-based morphometry [26], a z-score statistic
was calculated for cortical thickness which was found to be the most
informative feature according to Thesen et al. [26] at each vertex be-
tween a single patient and the control group. Cluster thresholding at
p b .05 was applied to correct for multiple comparisons [27]. Images
were thresholded at z = 2.1 (p = .035) [26].
2.8. Machine learning classification

Machine learning algorithms are ideally suited for dysplasia detec-
tion in that they can incorporate multiple quantitative MRI measures,
making maximum use of all relevant data available. The goal of the
machine learning classification model was to accurately differentiate
contiguous clusters of lesional vertices from nonlesional vertices in a
single patient. Accuracy was defined by classifying contiguous vertices
as “lesional”when they fell within the manually traced lesion or resec-
tion region for MRI-positive and MRI-negative patients, respectively,
and “nonlesional” when they fell outside of these regions.

Designing an appropriate classification scheme for detecting FCD
under these constraints has three important challenges. First, class
label noise arises from subjectivity in delineating the lesion zone (either
a manually traced MRI-visible zone or resection-defined zone). Second,
the anatomic complexity and heterogeneity in folded cortical tissue re-
duce the ability to discern lesional tissue from the normal cortex,
which is one of the reasonswhy a large number of lesions remain elusive
to human perception in routine radiological evaluation [28]. Third, class
imbalance [29] results from a ratio of substantially fewer lesional to
nonlesional vertices for a particular patient. The class imbalance problem
is further compounded by the higher availability of healthy control data
compared to patient data. We address each of these challenges in turn.
2.8.1. Addressing class label noise
Optimizing classifiers for detecting FCD lesions relies on accurately

labeling vertices as “lesional” or “nonlesional” in the training data.
Class label noise can arise from errors in human decision-making
and subjectivity, in addition to the anatomical complexity of the brain it-
self. For example, labeling “lesional” vertices in MRI-positive cases
involves subjective tracing of the FCD lesion. Moreover, in the absence
of an MRI-visible lesion, lesional vertices are delineated by the extent
of the tissue removed in surgery, which may include a gradation
from abnormal to normal tissue. From a supervised machine learning
perspective, treating all the resected vertices in the case of MRI-
negative patients as being lesional introduces substantial false positives
into the training data, which can have adverse effects on classifier
accuracy [30].

The fact that the resection zones in MRI-negative patients
include both lesional tissue and nonlesional tissue is problematic for
training classifiers. Hong et al. [16] address this problem by utilizing a
preprocessing step that not only includes the generation of texture
maps [31,32] but also requires human expertise and intervention to vi-
sually identify and trace lesions. In our approach,we used cortical thick-
ness to reduce the impact of false-positive label noise. Cortical thickness
is themost prominent feature on T1-weighted imaging in FCD [7,26,33].
We, therefore, trained the classifier on the vertices inside the resection
zone that showed the highest degree of thickness abnormality both in
terms of thickening and thinning.

Normal tissue classification was performed on data from control
subjects in order to control false negatives in the labeled data that can
arise because the lifetime seizure burden of a given patient can lead to
cortical abnormalities outside the seizure onset zone [34–37] or the
possibility of additional nonepileptogenic dysplastic lesions [38]. In ad-
dition, patients who are suffering from epilepsy due to developmental
factors may have additional lesions that either are not epileptogenic
or have latent epileptogenicity. Based on these considerations, we
chose not to include nonlesional vertices from the subjects as negative
instances in our training data.
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2.8.2. Reducing cortical complexity
Anatomical complexity of the cortical convolution may account for

why many lesions remain undetected in radiological MRI evaluations.
The folding of the cortex varies across individuals, and it can hinder the
visibility of subtle FCD lesions that may be hidden deep within the folds.
Recent studies have shown that subtle FCD lesions occur with higher
frequency at the bottom of the sulcus. Given these observations, we de-
signed a stratified classification scheme composed of different classifiers
that were trained separately for sulcal, wall, and gyral regions. We sepa-
rated the data into three nonoverlapping levels where (i) sulcal depth
in the range [−2,−1] represents vertices that are part of the sulcus, (ii)
[1, 2] represents vertices residing on the gyrus, and (iii) the vertices in-
between (i.e., with a sulcal depth of [−1, 1])were labeled aswall vertices.
Partitioning the vertices into these three groupsmeant that we needed to
calculate the two thresholds for mitigating label noise per sulcal level,
which resulted in a total of six distinct thresholds (i.e., 1. thin/sulcus, 2.
thick/sulcus, 3. thin/gyrus, 4. thick/gyrus, 5. thin/wall, and 6. thick/wall).
In otherwords, for each sulcus level X,we trained two separate classifiers,
which differed in how the training data for lesional vertices were collect-
ed. Specifically, one classifier was based on vertices of sulcal depth X and
thinning values less than our threshold “τ-thin”whereas the other classi-
fierwas based on vertices of sulcal depth Xwith cortical thickening great-
er than our threshold “τ-thick”. Note that although we used cortical
thickness to reduce the lesion area, our classifiers employed all four corti-
cal metrics to represent each vertex (i.e., cortical thickness, GWC, cortical
curvature, and Jacobian distortion).
2.8.3. Addressing class imbalance
This problem arises out of having substantially fewer vertices la-

beled as “lesional” than vertices labeled as “nonlesional.” Such an imbal-
ance in training data can result in classifiers that are biased towards the
majority class [29]. To address this issue, we used a “bagging” approach
[39]. We construct a set of “base-level” classifiers, each trained using
logistic regression, using an iterative-reweighted least squares (IRLS)
algorithm [40]. Each base-level classifier is trained on all the minority
class instances (lesional vertices) and an equal-sized random sample
of majority class instances (nonlesional instances). A “bag” of ten
“base-level” classifiers was trained for each of the resulting six subsets
of vertices. To classify a vertex as lesional or nonlesional, we first used
its sulcal depth to choose the two correct bags of classifiers (e.g., if the
sulcal depth was “sulcus”, we use the “thin/sulcus” and “thick/sulcus”
classifiers). Next, each of the ten base-level classifiers was applied for
each bag. The final classification was obtained by a majority vote of
their predictions. The overall training and testing phases of the pro-
posed classification scheme are shown in Figs. 1A and B, respectively.
Fig. 1.Different steps involved in the (A) training and (B) test phases of the proposed classificati
test subject, we calculate two labels per vertex: one from each thick/thin classifier. The final la
2.9. Experimental method

A leave-one-out cross-validation (LOOCV) strategy was used to test
the performance of the classifier on unseen data. In each run,we left out
a single subject from the data and trained a classifier on vertices belong-
ing to all the remaining subjects and the controls. The output of each lo-
gistic regression classifierwithin thebag is theprobability that the given
input vertex belongs to the positive (lesional) class. To convert this
probability into a class label, we defined a threshold ρ = 0.95 for the
output values such that the vertices that have a predicted probability
above ρwere deemed lesional and those that fall below ρwere consid-
ered normal. After classifying each vertex of the test subject, the results
were postprocessed [26] to remove spurious detections by defining the
detected cluster as a set of contiguous lesional vertices having a surface
area greater than or equal to 50mm2, an approach similar to [41]where
the threshold was determined as the area of the largest cluster detected
by the classifier in the control population.

To determine detection values, patients were regarded as true posi-
tives if any of the remaining clusters partially or completely overlapped
with the lesion/resection area. Outside clusters were considered false
positives. It should be kept in mind that the resulting detection outside
the lesion/resection zone may actually represent other malformations
in the cortex that either have escaped visual inspection or were not
part of the seizure onset zone. Thus, the statistics provided here repre-
sent a lower bound on actual classifier performance.

2.9.1. Performance evaluation metrics
We use three metrics to quantify and contrast the performance of

our classification scheme with the baseline univariate approach. These
include the true positive rate (TPR), the false positive rate (FPR), and
the Dice coefficient (DC) [42]. The DC is a set similarity metric that is a
special case of the kappa statistic [43]. It is commonly used to measure
the accuracy of segmentation in medical images when ground truth is
available [44,45]. We use DC to measure the overlap between the final
detected clusters (after postprocessing) and the resection or expert-
traced lesion for a test patient.

Let, the resection/lesion zone be represented by a binary vector
Mlabel ∈ {0,1}, and let Mpred ∈ {0,1} be the binary vector representing
the detection results. The metrics are then defined as follows:

TPR Mlabel;Mpred
� � ¼ Mpred ∩Mlabel

�� ��

Mlabelj j ð1Þ

FPR Mpred;Mlabel
� � ¼ Mpred ∩Mlabel

�� ��

Mlabel
�� �� ð2Þ
on scheme. Note that the lesion reduction step is applied only to the training patients. For a
bel of the vertex is calculated as the maximum of both predicted labels.



Table 2
Detection results for both MRI-positive and MRI-negative subjects.

Subject ID z-Score ML

TPR FPR DC TPR FPR DC

MRI-positive
NY49 11.85 1.00 19.92 24.76 2.27 34.58
NY53 20.28 2.60 29.60 27.72 4.46 35.42
NY123 29.80 3.68 27.61 31.33 4.50 26.36
NY143 16.38 0.60 12.28 20.03 2.00 5.81
NY156 26.12 1.20 38.69 25.65 2.11 36.14
NY187 – 0.50 – – 0.90 –
NY194 7.79 0.14 14.00 11.48 0.58 18.18
Mean 16.03 1.40 20.30 20.14 2.41 22.36

MRI-negative
NY46 – 0.34 – 0.95 0.74 1.78
NY51 2.86 1.00 5.11 4.15 1.02 7.24
NY67 4.35 0.26 8.13 8.30 0.65 14.45
NY68 0.09 1.33 0.14 0.12 1.69 0.15
NY72 – – – 0.55 0.25 1.07
NY98 – 0.33 – – 0.81 –
NY116 – – – – 0.39 –
NY130 – 0.16 – – 0.25 –
NY148 – 0.10 – – 0.12 –
NY149 – 0.84 – – 1.68 –
NY169 – 1.02 – 9.41 1.98 8.97
NY171 2.45 1.00 2.93 2.94 1.80 2.57
NY177 1.88 0.14 3.59 3.20 0.32 5.80
NY207 – 0.05 – – 0.60 –
NY212 – 1.01 – – 1.60 –
NY226 – 0.50 – 1.09 0.60 1.88
NY241 – 0.33 – – 0.40 –
NY255 3.23 0.42 6.01 6.18 1.30 10.30
NY259 – 0.50 – – 0.58 –
NY294 – 0.50 – – 1.40 –
NY297 2.98 0.14 5.64 7.98 0.56 13.30
NY299 – 3.13 – 3.30 4.86 4.32
NY312 6.10 0.50 10.05 9.04 0.97 12.83
NY322 1.74 0.31 3.25 2.02 0.49 3.66
Mean 1.07 0.58 1.87 2.47 1.04 3.68

For each subject, the true-positive rate (TPR) and false-positive rate (FPR) are calculated as
the percentage of lesional vertices correctly labeled and the percentage of nonlesional ver-
tices incorrectly labeled, respectively. The Dice coefficient (DC) is also shown as a percent-
age to quantify the overlap between the detected clusters and the resection on the cortical
surface.
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DC Mpred;Mlabel
� � ¼ 2 Mpred ∩Mlabel

�� ��

Mpred
�� ��þ Mlabelj j ð3Þ

where |M| represents the first norm of the binary vector and, in our case,
translates to the number of verticesmarked as lesional andM represents
an invertedmask, such that the original 0 values are replacedwith 1 and
vice versa.

3. Results

In this section, we review the performance of our proposed classifi-
cation scheme and contrast it with the baseline z-score-based method.
We also provide empirical evidence to support our design decisions,
i.e., classifier stratification, mask reduction, and bagging.

3.1. Overview of the detection results

For MRI-positive patients, both the z-score and machine learning
approaches were found to perform identically and accurately detected
lesions in 6 out of 7 patients, yielding an 86% detection rate (Table 2).
Machine learning correctly identified a significantly larger proportion
(t(7) = 3.3, p b 0.05) of the lesional area (mean = 20.14%) compared
to the z-score approach (mean = 16.03%) as quantified by the TPR.
However, the differences in the DC values were found to be not statisti-
cally significant. The false-positive rate was significantly lower for the
z-score approach (mean = 1.4%) compared to the machine learning
approach (mean = 2.4%; t(7) = 5.1, p b .01) (see Table 2). Fig. 2A
shows an example of a detected lesion in an MRI-positive patient.
Detailed results for both approaches are listed in Table 2.

For patients with MRI-negative lesions, the machine learning
approach significantly outperformed the z-score-based method. The z-
score-based method correctly detected lesions in 9 out of the 24 patients
(37%),whereas themachine learning approach correctly detected clusters
inside the resection zone for 14patients (58%) (see Table 2). Fig. 2B shows
an example of a detected lesion in an MRI-negative subject. The overall
true-positive rate was significantly higher (t(23) = 3.04, p b 0.01) in
the machine learning approach (mean = 2.5%) compared to the z-score
approach (mean = 1.1%). The DC values for the machine learning ap-
proach (mean = 3.68%) were also significantly superior (t(23) = 3.04,
p b 0.01) to the baseline (mean = 1.87%). However, the false-positive
rate was also significantly higher (t(23) = 5.65, p b .001) in the machine
learning approach (mean = 1.0%) compared to the z-score approach
(0.6%). Detailed results are shown in Table 2.

3.2. Sensitivity analysis of design decisions

In order to determine whether correcting for cortical complexity by
stratifying classifiers by sulcal depth results in improved detection rates,
we reran the training phase in the leave-one-out cross-validation with-
out this correction (note thatwe retain bagging andmask reduction). As
depicted in Tables 3 and 4 (compare theML column to column “A”), the
true-positive rate dropped from 20.1% to 12.9% in the MRI-positive
group and lesion detection dropped from 58% to 33% in the MRI-
negative group. This suggests that different feature combinations
might be more prevalent in specific regions (e.g., sulcus, gyrus, and
wall), which is consistent with the observation of region-specific dys-
plasia subtypes (e.g., bottom-of-the-sulcus dysplasia).

In order to correct for the class label noise problem, we employed a
strategy to reduce vertices labeled as “lesional” to those that were sig-
nificantly thicker or thinner than “nonlesional” vertices. We tested the
improvement in detection rates when utilizing this strategy by rerun-
ning our analysis without mask reduction (note that we retained strat-
ification and bagging for this experiment). The results are again
depicted in Tables 3 and 4 (compare the ML column to column “B”)
and show a drop in detection rates for both the MRI-positive group
(from 6/7 to 3/7) and the MRI-negative group (from 14/24 to 3/24 de-
tections). This indicates that class label noise is a significant issue for
both groups that can be corrected by utilizing amask reduction strategy
with a separate threshold for cortical thickening and cortical thinning.

Our last experiments examined the impact of bagging on the results
(we eliminated bagging and retained stratification and mask reduc-
tion). We see from Tables 3 and 4 that eliminating bagging resulted in
the most substantial drop in performance; the TPR of the MRI-positive
group dropped from 20.1% to 2.1%, and for the MRI-negative group,
the detection rate dropped from 14/24 to 0/24. In other words, failing
to correct for the class imbalance problem resulted in zero detection
of MRI-negative FCD lesions. This strongly supports the use of such bag-
ging and stratified classifiers in future machine learningmodels for FCD
detection. Fig. 3 summarizes our results and contrasts the rate of detec-
tion forMRI-negative patients under different variations in the design of
the machine learning approach.

4. Discussion

Our results demonstrate that surface-based morphometry, coupled
with a multivariate classification scheme that is adapted for FCD lesion
data, can successfully detect epileptogenic FCD lesions on MRIs that
were previously interpreted as normal by neuroradiologists. This ap-
proach correctly identified epileptogenic regions in 58% of MRI-
negative patients compared to 37% when using univariate statistics. A
separate analysis showed that while the best detectors of FCD lesions



Fig. 2. Detection results for the ML-based approach for (A) an MRI-positive and (B) an MRI-negative patient. The inflated lateral and medial cortical surfaces show the original expert-
traced lesion (A) or the resection zone (B) as the regions outlined by the white solid curve. The significant lesional clusters discovered by the ML-based approach are shown in yellow.
The MRI slice on the right shows the abnormal area corresponding to the clusters discovered inside the lesion/resection on the actual brain volume.
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were cortical thickness and GWC, features commonly used in the visual
diagnosis of FCD,measures of cortical complexity, such as curvature and
Jacobian distortion, also contributed strongly to lesion detection. This
finding suggests that MRI images contain ample information about
focal epileptogenic lesions but do so to a degree and in a complexity
that may not be appreciable by visual inspection alone.

Malformations of cortical development are the third most frequent
disease entity associatedwith TRE, and FCD is the underlying pathology
in 75% of these cases [46]. Resection of FCD tissue is critical to seizure
control; therefore, it is an important target for MRI evaluation during
presurgical assessment. The presurgical detection of a lesion informs in-
tracranial electrode placement and provides a valuable target that,
when surgically resected, can lead to a substantial improvement in post-
surgical outcome [47,48]. Indeed, surgical success in patients with neo-
cortical epilepsy and a concordant MRI lesion is drastically improved
(66%) compared to cases without lesions (29%) [49].

The application of machine learning algorithms to the detection of
FCD lesions resulted in a unique set of challenges that are specific to
this clinical population, requiring innovative solutions. The existence
of these challenges and the improvement in classification when solu-
tions were implemented offer a unique perspective on the biological
complexity of focal cortical dysplasia. One such challenge was the pres-
ence of abnormal vertices outside of the histopathologically confirmed
focal dysplastic region. Although these are considered to be statistical
false positives, alternative explanations must also be considered, such
as the following: (1) the presence of a dysplastic cortex outside of the
seizure onset zone may or may not have latent epileptogenic potential
[38] and/or (2) the burden of intractable seizures on brain structure
could result in subtle abnormalities (e.g., atrophy and gliosis) that
may be difficult to distinguish from developmental aberrations
Table 3
A comparison of detection results using the z-score-based method and the ML method
only for MRI-positive subjects with different variations in the design of the ML approach.

Patient z-Score ML (A) (B) (C)

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

NY49 11.8 1.0 24.8 2.3 8.7 0.6 – – 0.6 –
NY53 20.3 2.6 27.7 4.5 23.5 4.2 10.6 1.2 4.3 0.2
NY123 29.8 3.7 31.3 4.5 31.4 4.6 25.2 1.2 7.4 0.1
NY143 16.4 0.6 20.0 2.0 – 0.4 – – – 0.1
NY156 26.1 1.2 25.7 2.1 26.4 1.8 20.1 0.4 2.1 –
NY187 – 0.5 – 0.9 – 0.6 – 0.4 – –
NY194 7.8 0.1 11.5 0.6 – – – – – –
Mean (%) 16.0 1.4 20.1 2.4 12.9 1.7 8.0 0.5 2.1 0.1

(A) No stratification along the sulcal values, (B) stratifies the data based on the sulcal
depth values but does not reduce the lesion mask, and (C) uses stratification and lesion
reduction, but it does not use bagging. The TPR and FPR are measured as a percentage.
[34–37,50]. Both of these possibilities could impact postsurgical
outcomes and are thus worth further exploration. For example, magne-
toencephalography or intracranial electroencephalography could be
used to determine whether there is abnormal electrophysiology in
these “false-positive” regions. Tracking postsurgical outcomes could de-
termine whether a greater extent of “extralesional” abnormalities is as-
sociated with suboptimal postsurgical seizure control or functional
outcomes.

An additional challenge for machine learning algorithms is the het-
erogeneity of pathological and MRI features in FCD. For example, FCD
lesions might contain small diameter cells that may result in an abnor-
mally thin cortex on MRI [51] or large dysmorphic cells that may result
in an abnormally thick cortex onMRI [7].We observed improved classi-
fication rates when we stratified labeling of “lesion” vertices in the le-
sion zone/resection zone based on separate thresholds for cortical
thickening and thinning. Additionally, specific regions of the cortical ar-
chitecture may be more vulnerable to dysplastic pathology. Focal corti-
cal dysplasia lesions occur with higher frequency at the bottom of the
sulcus, potentially reflecting different “micromechanic” tensions that
enhance pathophysiological vulnerability in the sulcal bottom [22].
We observed improvement when we stratified classifiers trained sepa-
rately for sulcal, wall, and gyral regions. The improvement in our model
after implementing such solutions suggests that similar stratification
strategies should be employed in future FCD lesion detection efforts.

The resection zones of MRI-negative patients include both lesional
tissue and nonlesional tissue; therefore, the resection zone cannot be
treated as a gold standard for training classifiers. Hong et al. [16] utilize
a mask reduction step in which texture maps [31,32] are used tomanu-
ally trace the lesion forMRI-negative patients that have type II FCD. This
preprocessing not only entails the generation of texture maps but also
requires specific human expertise to identify lesions. In the proposed
approach, we use cortical measures to reduce the resection mask, such
that the resected regions that are not significantly different from the re-
gions outside the resection zone are not used for training the classifier.
We hypothesize that this approach will accurately classify FCD lesions
in a sample of patients with verified MRI-negative FCD lesions.

The methodological approach used in the current study to improve
lesion detection of MRI-negative images has a number of significant
advantages. First, it works with most existing scanners and sequences
and does not require advanced imaging technologies. Second, as we
learn more about FCD, stratification of larger data sets into distinct
FCD subtypes [52] can be incorporated into future training sets to help
the system learn specific subtype features and potentially classify FCD
by subtype. Third, such a method can be fully automated and thus,
with minimal effort, can augment visual inspection by yielding
targets for closer evaluation by neuroradiologists. This latter point is im-
portant, given the fact that the visual detection of FCD on MRI varies



Table 4
A comparison of detection results using the z-score-based method and the ML method only for MRI-negative subjects with different variations in the design of the ML approach.

Patient z-Score ML (A) (B) (C)

Detected FPR Detected FPR Detected FPR Detected FPR Detected FPR

NY46 N 0.34 Y 0.74 N – N – N –
NY51 Y 1.00 Y 1.02 Y 0.95 Y 0.30 N –
NY67 Y 0.30 Y 0.65 Y 0.19 N – N –
NY68 Y 1.33 Y 1.69 Y 1.56 Y 0.81 N –
NY72 N – Y 0.25 N – N – N –
NY98 N 0.33 N 0.81 N 0.56 N – N –
NY116 N – N 0.39 N – N – N –
NY130 N 0.16 N 0.25 N 0.16 N – N –
NY148 N 0.10 N 0.12 N 0.10 N – N –
NY149 N 0.84 N 1.68 N 0.18 N – N 0.06
NY169 N 1.02 Y 1.98 N 0.09 N – N –
NY171 Y 1.00 Y 1.80 Y – N – N –
NY177 Y 0.14 Y 0.32 Y 0.30 N – N –
NY207 N 0.05 N 0.60 N – N – N –
NY212 N 1.01 N 1.60 N 1.13 N 0.53 N 0.06
NY226 N 0.50 Y 0.60 N 0.46 N 0.20 N –
NY241 N 0.33 N 0.40 N 0.35 N 0.08 N –
NY255 Y 0.42 Y 1.30 Y 0.08 N – N –
NY259 N 0.50 N 0.58 N 0.50 N 0.17 N –
NY294 N 0.50 N 1.40 N 0.20 N – N –
NY297 Y 0.14 Y 0.56 Y – N – N –
NY299 N 3.13 Y 4.86 N 0.30 N – N –
NY312 Y 0.50 Y 0.97 Y 0.73 Y – N –
NY322 Y 0.31 Y 0.49 Y 0.12 N – N –
Mean (%) 9/24 (38%) 0.58 14/24 (58%) 1.04 8/24 (33%) 0.33 3/24 (12%) 0.09 0/24 (0%) 0.005

(A) No stratification along the sulcal values, (B) stratifies the data based on the sulcal depth values but does not reduce the lesionmask, and (C) uses stratification and lesion reduction, but
it does not use bagging. FPR is given as a percentage.
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widely among raters, and is highly dependent on the experience of the
evaluator.
4.1. Limitations

In the current study, training data in MRI-negative cases were de-
rived from resection areas that were defined by intracranial electro-
physiology. Focal cortical dysplasia pathology was present in the
resection area in all patients; however, nonlesional tissue may have
also been resected.We reduced this problem by applying amask reduc-
tion step, and this increased performance. In future research studies,
Fig. 3.A comparison of detection results inMRI-negative subjects with different variations
in the design of the ML approach, including (A) without bagging (cf. Section 2.8.3) but
with sulcal stratification and lesion reduction, (B) without lesion reduction (cf. Section
2.8.1) but with bagging and sulcal stratification, (C) without stratification (cf. Section
2.8.2) but with bagging and lesion reduction, and (D) using all including bagging, lesion
reduction, and sulcal stratification.
this step can be improved by accurately coregistering the pathological
sample with the MRI, allowing the matching of pathological and MRI
slices.

In addition, our sample of MRI-negative patients was dispropor-
tionately higher than MRI-positive patients, which may not reflect
the proportions seen at other neurological clinics. This likely repre-
sents a bias in patient referrals to our level 4 epilepsy center, which
offers intensive neurodiagnostic monitoring for patients with treat-
ment-resistant epilepsy that is difficult to localize. Our results offer
a potential advancement of neurodiagnostic tools for this more chal-
lenging population. However, the case–control methods that we uti-
lize in our approach require a large healthy control MRI data set with
identical scanning parameters as those of the patient and thus can-
not be readily applied in any clinical center. Further investigations
with combined data sets from different scanners and institutions
are needed to create methods for making these analyses feasible
with different scanning sequences across centers. Finally, automated
detection and classification of lesions should not replace careful vi-
sual analysis of a trained expert. Rather, the quantitative approach
can be used to supplement visual analysis by highlighting areas
with a high lesional probability. These results should always be
interpreted in the context of all available patient information collect-
ed during presurgical evaluation.
5. Conclusion

In summary, we have demonstrated that a quantitativemorphomet-
ric method using surface-based brain modeling, combined with ma-
chine learning algorithms and novel strategies to deal with the
complexity of cortical malformations, results in improved detection of
FCD. Improved detection of neocortical structural lesions is likely to in-
crease the number of patient referrals to specialized tertiary epilepsy
centers for surgical consideration and, in many cases, may decrease
the delay between initial diagnosis and surgery. This has significant im-
plications for improved seizure and cognitive outcomes in patients with
FCD and concomitant epilepsy.
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